t^2+10t-135=0

Simple and best practice solution for t^2+10t-135=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t^2+10t-135=0 equation:



t^2+10t-135=0
a = 1; b = 10; c = -135;
Δ = b2-4ac
Δ = 102-4·1·(-135)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-8\sqrt{10}}{2*1}=\frac{-10-8\sqrt{10}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+8\sqrt{10}}{2*1}=\frac{-10+8\sqrt{10}}{2} $

See similar equations:

| -146-3x=-9x+58 | | 3n=2(n+3) | | 3(5p+4)-2(p+7)=24 | | 3c+18=42 | | 5^x-25^x=-2 | | (9x-20)+(2x+36)=180 | | 63+x=133+x | | 10=4.50h | | 165=76-x | | 4^2x-4^(x+1)+3=0 | | m=8+10/12+12 | | r+4.14=27.84 | | x+18+7x-16=90 | | 7r+3=8r-6 | | 2x-4(2x-2)=-6x+8 | | 9e+5e+6=90 | | x+5/3=x+3/2 | | 5t-6=7t | | -5(3x-5)=105 | | 4m+5=2m-10 | | H(t)=-25t-5t+1260 | | 4x/5+2/5=6/5 | | -10x+10=90 | | -2y-6=144 | | -6z+10=112 | | -x+6=112 | | -y-5=68 | | 9z-7=101 | | 79+5y-4=180 | | -x+8=33 | | 4x^2+15x+17=3x | | 6x+9=58 |

Equations solver categories